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In 2009, the University of Pavia launched the first Italian medical course taught 
in English, with the aim of creating an international school that would attract 
students from abroad as well as from Italy. We had the honor and the pleasure 
of teaching Medical Physics to the students of this course in the years between 
2009 and 2014 (Prof. D. Scannicchio), and after 2015 (Prof. A. Bacchetta). 

Many other international courses have been set up in Italy and in other Euro-
pean countries in recent years. However, we have noticed that there is a lack of 
suitable textbooks, i.e., texts that cover the topics usually dealt with in European 
courses with the appropriate level of sophistication. There are excellent textbooks 
in Italian, but they do not fit our context. There are also excellent textbooks in 
English, but they cover different topics and have a different approach (most of 
them are entirely algebra-based). So we decided to write our own book, taking 
advantage of the long-established teaching methods developed at our univer-
sity, which was founded in 1361 and has one of the most prestigious medical 
faculties in Italy. 

Writing this book in a language that is not our own has been a challenge. We 
apologize if our style does not sound very natural and elegant to English-speaking 
readers. However, our limitations have led us to focus more on content than on 
style. For this reason, we hope that the book will be a simple and concise resource 
for students who use English as a second language. 

Similarly, we are physicists, not doctors. We are aware that our knowledge 
may be incomplete or outdated when discussing medically oriented concepts and 
applications. However, the aim of the book is not to be exhaustive and flawless, 
but rather to convey the idea that the concepts of Physics are essential in Medi-
cine and that the hard science approach, whenever applicable, is the best means 
we have to solve problems, even in Medicine. 

We have organized the book with the following goals in mind:

 • to show how Physics can be used to explain some 
phenomena that occur in the human body, from 
the microscopic to the macroscopic level;

 • to describe the physical principles that underlie 
modern medical instrumentation for diagnostic 
and therapeutic purposes;

 • to provide a useful reference for students of other 
biomedical courses.

In each chapter, the sections devoted to biomedical 
applications are indicated by a heart-shaped icon ; 
more than a third of the sections in the book are of 
this type.

As can be seen from the Table of Contents, we 
start with mechanics (Chapter 1) and its applications 

Foreword
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to the muscular and skeletal systems (Chapter 2). We devote Chapter 3 and 4 to 
fluid dynamics, as applied to the cardiovascular system. We then discuss gases 
and thermodynamics in relation to the respiratory system, human physiology 
and thermoregulation (Chapter 5). Chapter 6 is devoted to an analysis of the 
phenomenon of diffusion, in particular through membranes; although this topic 
is not usually included in introductory Physics courses, it is of great importance 
to Medicine. In Chapter 7, we review electrical phenomena and emphasize their 
role in cellular activity. Chapter 8 deals with the physics of wave phenomena, 
from sound waves to the perception of sound. Chapter 9 briefly reviews the 
concepts of magnetism that give rise to electromagnetic waves, which are now 
widely utilized in medical diagnostics and therapy. Chapter 10 considers the 
specific example of visible electromagnetic waves, i.e., light, and discusses optics 
and vision. Chapter 11 describes the structure of atoms and nuclei, in order to 
explain the nature of radiations, which are commonly exploited in diagnostic 
and therapeutic applications, and their interaction with biological systems. The 
last chapter (Chapter 12) deals with some important examples of biomedical 
instruments and recalls some of the notions discussed in the previous chapters.

As mathematics is the language of Physics, the book displays a certain level 
of mathematical sophistication. The students attending our courses are at the 
highest level: they deserve to be informed about the existence of certain mathe-
matical tools and of how powerful and versatile they can be. These are described 
in several MATH INSETS. For instance, we have introduced derivatives and inte-

grals, in simplified terms. However, the book can 
be read without any prior knowledge of Calculus.

In each chapter, we provide many examples and 
present problems, together with their solutions and 
numerical results. These not only show that Physics 
is useful in Medicine when it provides quantitative 
predictions, but also give the reader an indication 
of the orders of magnitude of the physical quanti-
ties encountered in biomedical problems.

We are aware that a standard, one-semester 
course in Physics for Medicine cannot cover all the 
subjects included in our textbook. Nevertheless, we 
hope that the book can be used as a flexible tool, 
both by teachers, who can select the topics and ap-
plications they consider most appropriate, and by 
students, who can also use the text as a reference 
manual for other courses, for specialist Master’s 
Degrees, and for their future careers.

We would like to thank Prof. E. Giroletti, Prof. S. 
Bortolussi (Department of Physics, University of 

Pavia, Italy), Prof. R. Orecchia (Scientific Direction IEO Milan, Italy), Dr. F. Ceci 
(Division of Nuclear Medicine, IEO Milan, Italy), Prof. B.A. Jereczek, Dr. F. Cat-
tani and their staff (Division of Radiotherapy and Division of Medical Physics, 
IEO Milan, Italy), Prof. F. Calliada (Echography, Mondino Hospital, Pavia, Italy), 
Prof. Ciro Esposito (Dialysis Service, ICS Maugeri, Pavia, Italy) and the CNAO 
and HIT Direction staff. 

We would also like to thank dr. L. Fiorenza, who first believed in this edito-
rial project, Dr. I. Nenci, Dr. A. Milani, all the Zanichelli staff and the English 
auditor Prof. B. Patrick. 



 CHAPTER 8

Waves and acoustics

8.1  Introduction: waves in nature and hearing
The wave motion and its propagation have considerable importance in the phys-
ical description of natural phenomena. In fact, there are numerous phenomena 
that show wave characteristics, such as sound waves, light waves, sea waves, 
seismic waves and, as we will see, all propagating periodic phenomena, such as 
the pulsatile motion of blood seen in Chapter 4.

Many aspects of this motion and its propagation can be generalized, which 
means that all wave phenomena can be described by means of similar phys-
ical-mathematical expressions. In the first part of this chapter, introductory 
notions of a general nature are provided; in the second part, these notions are 
applied to the description of sound phenomena and their applications in med-
icine. The study of mechanical vibrations that propagate in gases, liquids and 
solids (acoustics) is fundamental to understanding the mechanisms of reception, 
emission and transmission of these vibrations in humans and animals. Further-
more, as we will see, by using the propagation properties of mechanical waves, 
we can obtain non-invasive diagnostic information on the functionality of organs 
within biological systems, discussed in detail in Paragraph 12.7.

8.2  Description of waves
Let us consider a sea wave heading towards the coast. A float placed on the surface 
of the sea rises and falls without following the path of the wave. On observing 
the water molecules, we see that they oscillate around a position of equilibrium, 
without ever moving away from it. Waves transfer the disturbance (and in this 
way transfer energy) without transporting matter.

In general, a wave is a disturbance of the state of equilibrium of a system 
that propagates through space. Waves can be periodic, i.e. the function that 
describes the system repeats itself after a characteristic time (the period T). Sea 
waves are (almost) periodic. A sound wave associated with a specific note is a 
periodic wave. Light of a specific color is a form of periodic wave (electromag-
netic wave, discussed in Chapters 9 and 10). In our body, the sphygmic wave 
(Paragraph 4.8) is an example of an (almost) periodic wave that propagates along 
the walls of the arteries. Many types of waves are not periodic: a tsunami, the 
sound of a melody, a short pulse of light, the action potential traveling along 
the axon (Paragraph 7.14)... Indeed, any wave with a beginning and an end is 
not periodic.

A sea wave is a propagating periodic wave, i.e., it is an oscillation that repeats 
itself after a characteristic time and moves through the medium. The same ap-
plies to vibrations propagating in a solid medium or along a string (Figure 8.1). 
Wave phenomena require the oscillation of a system around an equilibrium 
position (vibration), and are related to the existence of restoring forces, for 
instance elastic forces.
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Wave phenomena are generally divided into two categories. Transverse waves 
occur when the vibration is perpendicular to the direction of propagation, while 
longitudinal waves occur when the vibration is parallel to the direction of prop-
agation (Figure 8.2). Electromagnetic waves, the wave propagating along a rope 
and the seismic S wave are transverse, while sound waves in air, waves in solids 
or along a spring are longitudinal.

In the following paragraphs, in order to simplify the initial description of wave 
phenomena, we will consider mechanical waves propagating in a single direction. 
However, these notions are applicable to any wave phenomenon.

8.3  Harmonic waves
As we saw in Chapter 1, a mass attached to a spring oscillates with a sinusoidal 
motion also called harmonic motion. Harmonic motion is the simplest type of 
a periodic phenomenon. A complex periodic motion can be described in terms 
of a superposition of harmonic motions. Understanding harmonic motion is 
thus extremely important.

A harmonic wave is the simplest type of periodic wave and is described by 
the function:

 S(x,t) = A  sin(ω  t – k  x + φ), (8.1)

b)
vibration

propagation

a)

vibration
propagation

Figure 8.2 Schematic representation 
of a) a transverse vibration and b) a 
longitudinal vibration.

Figure 8.1 Some wave phenomena: a) a sound wave (for example the vibration of a tuning fork sets in motion the molecules of the surrounding 
gas, which oscillate around their equilibrium position, creating volumes of compression and rarefaction); b) the surface wave propagating  
at the liquid-air interface (e.g., sea waves); c) a wave along a swinging rope; d) a wave through a spring; e) a type of seismic wave (S wave);  
f) a polarized (see Paragraph 8.7) electromagnetic wave, which is generated by the oscillation of electric and magnetic fields (described  
in detail in Chapter 9); g) elastic vibration propagating in a metal bar, where the atoms (black dots) oscillate back and forth around their 
equilibrium position.

a)
b)

e)

c)

g)

f)d)

See MATH INSET 8.1 
Fourier (or harmonic) analysis 
(p. 182)
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where S(x,t) can be any physical quantity (e.g., water level, pressure difference, 
electric potential...), and is defined as a function of position and time. While a 
simple oscillation is a function of time only, a wave is a function of space and 
time, and represents the propagation of the oscillation through space.

Figure 8.3a shows the plot of a wave as a function of space at different instants 
of time, like a series of snapshots. The crests of the wave move to the right as 
time increases. The distance between two crests is the wavelength (2 m in this 
case). After a period (4 seconds in this case), the wave returns to the starting 
configuration. Figure 8.3b shows the same wave as a function of time at different 
positions, i.e., it shows what happens at certain fixed positions. The period is 
the time between the transit of two crests. Two points separated by a wavelength 
move in exactly the same way.

In Eq. (8.1), the coefficient A is the amplitude of the wave, ϕ is the initial 
phase angle. The constant ω, called angular frequency or pulsation, is related 
to the characteristic period T of the vibration and is measured in radians/s. 
After one period, the function returns to its initial value, which means that the 
argument of the sine has to change by 2π radians, therefore

 [ω  (t + T) + ϕ] – (ω  t + ϕ) = 2π,

and ω  T = 2π,    from which      ω
T
2π

� . (8.2)

The frequency f of a wave is defined as the number of oscillations performed in 
the unit of time and therefore, by definition, we have f = 1/T, and

 ω f
T
2π 2π .� �  (8.3)

Figure 8.3 Plots of a wave with a period of 4 s and a wavelength of 2 m. a) As a function of position at different instants of time. b) As a function 
of time at different positions.
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The unit of measurement of frequency in the SI is the second–1 called hertz 
(Hz).

In Eq. (8.1), k is the wavenumber (measured in radians per meter). In three 
dimensions, the product k  x is replaced by the scalar product k · r and k is called 
the wavevector. The wavelength of a wave is connected to the wavevector by 
the relation

 λ
k

2π .
| |

�  (8.4)

If the sign in front of k is negative, as in Eq. (8.1), the wave is right-moving, i.e., it 
moves in the positive x direction. If the sign is positive, the wave is left-moving, 
in the negative x direction.

In conclusion the Eq. (8.1) can be written as (assuming ϕ = 0 for semplicity)

  t xS x t A
T λ

2π 2π( , ) sin .� �� �� �
� �

 (8.5)

The phase velocity of the wave is the velocity of a wave crest. In a period, the 
crest moves by a full wavelength, therefore phase velocity can be obtained as

 υ = λ  f. (8.6)

In general, the function describing a wave can be determined by solving a partial 
differential equation called the wave equation:

 
2 2

2
2 2

( , ) ( , ) .S x t S x tυ
t x

� �
�

� �
 (8.7)

It is not difficult to check that harmonic (i.e., sinusoidal) waves, Eq. (8.1), are 
solutions of the wave equation, with υ = λ  f.

Harmonic waves are only one of the many possible solutions of the wave 
equation. However, any wave can be decomposed in terms of harmonic waves. 
In the MATH INSET 8.1 we will show that any periodic (and even non-peri-
odic) phenomenon can be represented in terms of sinusoidal functions such 
as Eq. (8.1).

MATH INSET 8.1

A wave can be a very complex periodic or non-periodic 
function. An important mathematical theorem, demon-
strated by J. Fourier, establishes that any periodic function 
f(t) can be represented as a Fourier’s series, i.e., the sum of 
a finite or infinite number of sine and cosine functions that 
have appropriate amplitudes and frequencies.  Fourier’s 
theorem is written as follows:
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(M8.1)

Fourier (or harmonic) analysis

See MATH INSET 4.3 
Differential equations (p. 65)

See MATH INSET 1.1  
Basic ideas about vectors (p. 4)
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If the period of the function is T, then f = 1/T is the funda-
mental frequency and ω = 2π  f. The first sine and cosine 
functions in the Fourier’s series, with amplitudes S1 and C1, 
are called the fundamental harmonics. The frequencies 
of all other terms in the decomposition (higher harmon-
ics) are all multiples of the fundamental frequency. The 
Si and Ci coefficients are the amplitudes of the individual 
harmonics.

The following integral formulas allow us to obtain the 
coefficients Ci and Si:

                            
T

f t t
T

Co

0

1 ( )d( ),� �

                            
0

( )sin( )d( ),
2 T

i f t iωt tS
T

� �  (M8.2)

                            
0

2 ( )cos( )d( ).
T

iC f t iωt t
T

� �

As an alternative to Eq. (M8.1) we can have the following 
decomposition:

 
0

sin( ).( )
i

i i
i

D iωtf t
� �

�
� �� �  (M8.3)

where the Fourier coefficients are now the amplitudes Di 
and the phases ϕi that can be related to the amplitudes Si 
and Ci of the previous decomposition by

   2 2
i i iD S C� �           and          tg .i

i
i

S
C

��  (M8.4)

Figure M8.1a shows the first terms of the Fourier series of a 
square wave (blue line). The function has an average value 

of zero, therefore Co = 0. All the terms with cosines and 
all the even harmonics (with 2  ω, 4  ω… ) have coefficients 
equal to zero. The series can be written in the following way:

f t ωt ωt ωt4 1 1( ) sin( ) sin(3 ) sin( )
π 3 5
� �

� � � ��� �
� �

 (M8.5)

After summing the first three odd harmonics, the resulting 
curve in red starts to approach a square wave. Figure M8.1b 
shows the amplitude spectrum of the periodic function, 
i.e., the amplitudes of each individual harmonic. In this 
case, the higher the harmonic is, the smaller its amplitude is.

As another example, let us consider the behavior 
of the instantaneous velocity of the blood in the case 
of pulsatile flow (see Figure 3.16). Since it is a period-
ic function, we can perform its Fourier analysis. In this 
case, the period is 0.69 s. Figure M8.2a shows the original 
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Figure M8.1 a) The first three odd harmonics of the Fourier analysis 
of a square wave. Adding many other harmonics gives a curve in red 
that is closer and closer to the square wave. b) Fourier spectrum of 
the square wave.
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Figure M8.2 a) The complex behavior of blood velocity in an 
artery is described by a periodic function. b) This function can be 
Fourier analyzed and the figure shows the first three terms of the 
decomposition. c) Fourier spectrum of the previous function. 
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8.4  Wave propagation
In the propagation of mechanical vibrations, one point of the medium trans-
mits the oscillation to its neighbors, i.e. to contiguous points. Owing to energy 
conservation, propagation of the wave involves the transmission of energy. The 
direction of energy flow is the direction of propagation of the wave, also called 
the ray of the wave (Malus principle). Wave intensity I is defined as the energy 
transported in the unit of time and through the unit of surface perpendicular to 
the direction of propagation. In the SI, intensity is measured in watts/m2. In the 
case of curved surfaces and/or variable propagation directions, we can, as usual, 
take an infinitesimally small surface element and define at each point an energy 
flow intensity vector, or energy current density vector, which is similar to the 
concepts of heat flow intensity, solute current density, etc.

When studying elastic oscillations in Paragraph 1.10, we established that the 
potential energy of a particle of mass m moving with harmonic motion is (from 
Eqs. (1.35) and (1.33))

 U = 
1
2

  ω2  m  S2(t), (8.8)

where S(t) is given by Eq. (8.1) at x = 0, while the velocity of the particle is

 υ = ω  A  cos(ω  t + ϕ). (8.9)

The total energy of the particle is therefore

                Etotal = U + Ek = 
1
2

  ω2  m  S2(t) + 
1
2

  m  [ω  A  cos (ω  t + ϕ)]2 = 
(8.10)

                        = 
1
2

  A2  ω2  m  [sin2 (ω  t + ϕ) + cos2 (ω  t + ϕ)] = 
1
2

  A2  ω2  m,

curve (blue) compared with the sum of the first three 
harmonics. The individual harmonics are shown in 
Figure M8.2b (notice that the first harmonic is displaced 
by the C0 coefficient, i.e., the average velocity, which in 
this case is about 8.3 cm/s). A complex wave with its 

Fourier spectrum and Fourier power spectrum is shown 
in Figure M8.3. This theorem can also be extended to 
non-periodic functions; in this case, however, any fre-
quency can contribute and the sum turns into an integral 
(Fourier’s integral, see MATH INSET 9.1).

Figure M8.3 a) A complex periodic wave. b) Fourier amplitude spectrum 
(a) as a function of frequency. c) By squaring the amplitudes in Fourier 
amplitude spectrum, a Fourier power spectrum is obtained indicating 
which frequencies carry the most energy (Eq. 8.10). For much more complex 
vibrations the discrete amplitudes or their power are so piled close to each 
other as to originate a smooth function of the frequencies. frequency

amplitude

frequency

power

signal

time

a)

b)

c)

frequency

amplitude

frequency

power

signal

time

a)

b)

c)



© 978-88-08-32046-9 185  8.4 | Wave propagation

from which we see that the square of the amplitude A of the oscillation is 
proportional to the total energy of the system. This result is very general and 
applies to waves as well: the intensity of the wave is proportional to the 
square of its amplitude.

As mentioned above, in the propagation of mechanical vibrations, a particle 
transmits the oscillation to its neighbors, i.e., to contiguous points. The wave-
front is the set of all the points of the medium that are in the same state of 
vibration (i.e., they have the same phase), for example at the maximum value of 
the vibration amplitude.

In three dimensions, if the source is point-like, and energy is transmitted 
equally in all directions, the wavefronts are spherical (Figure 8.4a). The wave 
function depends only on time and the distance r from the source:

 S(r,t) =  oA
r

  sin 
 t r
T λ

2π 2π
,

� �
�� �

� �
 (8.11)

where Ao is the initial vibration amplitude. The energy distributed on the spher-
ical surface of the wavefront of a wave with amplitude A = A(r) is proportional 
to A(r)2r2. Since the energy has to be constant, we obtain A(r) = Ao/r.

According to Huygens’s principle, any point on a wavefront becomes the 
source of a spherical wave, as shown in Figure 8.5.

A very important feature of wave propagation is that waves with lower fre-
quencies are less collimated. This is due to the phenomenon of diffraction 
(discussed in Paragraph 10.3), which occurs when a wave meets an obstacle: the 
wave spreads around the obstacle (Figure 8.6). The amount of diffraction de-
pends on the relative size of the obstacle and the wavelength of the waves. Waves 
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Figure 8.4 a) Schematic 
representation of a spherical 
wavefront: all points of the spherical 
wave surfaces vibrate with the same 
phase. b) The energy transported 
inside a fixed solid angle is conserved. 
Since the area of the wavefront 
increases as the square of the 
distance, the energy is distributed on 
the larger surface, and the intensity of 
the wave decreases accordingly. 

Figure 8.5 a) Semicircular wave 
surfaces arise at the openings. 
b) Generation of a plane wave 
surface: the envelope of the spherical 
wave surfaces forms a plane wave 
surface.
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with longer wavelengths (lower frequencies) are more affected by diffraction and 
spread more. Waves with shorter wavelengths (higher frequencies) spread less 
(they are more collimated).

The principle of superposition of waves states that when two or more waves 
overlap, the net vibration at any point and at any instant of time is the sum of the 
individual vibrations due to each wave. If the vibrations occur in different direc-
tions, the net vibration is the vector sum of the individual vibrations (Figure 8.7).

These three principles are important in optics (Chapter 10) and in the inter-
ference phenomena (Paragraph 8.6).

8.5  Wave reflection and refraction
The phenomenon of reflection occurs when a wave reaches the interface between 
two different media. The laws of reflection state that

1) the incident ray, the reflected ray and the normal to the surface lie in the 
same plane, and

2) these rays form an angle of reflection r̂ equal to the angle of incidence  ̂i
(Figure 8.8).

Using Huygens’s principle, the laws of reflection can be easily derived as shown 
in Figure 8.9.

The phenomenon of refraction, on the other hand, takes place when the wave 
is transmitted from one medium to another that has different physical properties. 
Also in this case, Huygens’ principle can be used to obtain the refracted wavefront 
and therefore the laws of refraction (Figure 8.10). The laws of refraction (Snell’s 
laws, Figure 8.11) state the following:

1) the incident ray, the refracted ray, and the normal to the surface separating 
the two media lie in the same plane;

2) owing to the different speeds of propagation in the two media, the following 
relationship is valid (Figure 8.10):

 1 2
12

2 1

ˆsin ,
ˆsin
i υ nn
r υ n
� � �  (8.12)

where the constant n12 is called the relative refractive index of the second 
medium with respect to the first, while n1 and n2 are the absolute refractive 
indexes of the two media.

a) b)

c) e)d)

Figure 8.6 When meeting an obstacle, 
the wave does not proceed in a 
straight direction, but spreads around 
the obstacle, a phenomenon called 
diffraction. Increasing the frequency 
the waves are more collimated (confront 
between a) and b) and between c) and 
d). To obtain diffraction again from d) 
the slit must shrink as in e).

Figure 8.7 Two waves (e.g., two 
vibrations of a string) traveling in 
opposite directions overlap: the 
resulting vibration at any point and 
instant of time is the sum of the 
vibrations due to each wave. 

re�ected rayincident ray

normal
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ri = 

Figure 8.8 Reflection of the 
propagation ray of a wave 
phenomenon from point P.
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When a wave crosses the interface between a medium with a lower index of 
refraction (higher propagation speed) and one with a higher index of refraction 
(lower propagation speed), the refracted ray bends closer to the normal to the 
interface (Figure 8.11). Conversely, if the wave passes from a medium with a 
higher refractive index to one with a lower refractive index, when the angle of 
incidence exceeds an angle io (limit angle), corresponding to an angle of refrac-
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Figure 8.9 a) A plane wave hits a 
flat surface. In chronological order, the 
wavefronts AAʹ, BBʹ and CCʹ touch 
the surface and points A, B and C 
become sources of spherical waves 
that propagate upwards, forming the 
reflected wavefronts AAʹʹ, BBʹʹ etc. 
b) Application of Huygens’ principle 
to the phenomenon of reflection. The 
wave surface AP initially meets the 
obstacle in A. After a time interval Δt, 
the elementary Huygens’ wave coming 
from P at velocity υ arrives on the 
obstacle in B, while the one coming 
from A, at the same velocity reaches 
point Bʹʹ. The triangles ABP and BABʹʹ 
are equal, the angles î  and r̂ are also 
equal �ˆ ˆ( ).i r
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Figure 8.10 A plane wave hits a plane that separates two media. Huygens’ principle allows us to obtain 
the law of refraction. The incident wavefront AP initially strikes the plane at point A and, after a time 
interval Δt, the elementary Huygens’ wave coming from P, at velocity υ1, reaches B. In the same interval 
Δt, the elementary wave emitted from A into the second medium reaches Bʹ and BBʹ is the refracted 
wavefront. By applying simple trigonometric relations, we obtain: AP  sin î  = υ1  Δt and AP  sin r̂ = υ2  Δt. On 
dividing the two equations member by member, we obtain the law of refraction (8.12).
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Figure 8.11 Refraction of the 
propagation ray between two 
materials with different refractive 
index n1 and n2.
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tion of 90°, the intensity of the refracted ray vanishes and total reflection of the 
incident ray occurs (Figure 8.12).

Total reflection occurs when

 
 i no

12

ˆsin ,
sin90

�
�

          from which           ni
n

2
o

1

ˆsin �  (n1 > n2).  (8.13)

In general at the interface between two media both reflection and refraction 
occour. The sum of reflected and refracted waves energies is the energy of the 
incident wave. 

Reflection and refraction are used in the production of diagnostic images by 
means of ultrasounds (mechanical vibrations at ultrasonic frequencies); this use 
is treated in Chapter 12 (Paragraph 12.7).

Light is a specific example of an electromagnetic wave (Chapters 9 and 10). 
Electromagnetic waves do not need a medium in order to propagate. The speed 
of light in a vacuum, usually indicated by the letter c (about 3 ·105 km/s), is the 
maximum speed allowed in nature. In the case of light, the index of absolute 
refraction in a vacuum is n = 1. The relative refractive index is expressed in rela-
tion to the absolute refractive index and is always greater than one (Chapter 10).

8.6  Wave interference
The word “interference” includes all those wave phenomena that arise from the 
superposition of two or more waves.

To simplify the treatment of the phenomenon, let us consider two waves with 
the same frequency f, equal amplitude A, the same direction of vibration (lon-
gitudinal or transversal) and coming from two coherent sources (Figure 8.13). 
Two sources are said to be coherent when they vibrate with a strictly constant 
phase difference.

At point P, the two vibrations are summed. From Eq. (8.5) we obtain:

 1 2
1 2 sin 2π sin 2π .t x t xS S S A A

T λ T λ
� � � �� � � �� � � � � �� � � �� � � �

� � � �� � � �
 (8.14)

The overall vibration at point P can be represented as a harmonic vibration with 
the same frequency f of the components:
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Figure 8.12 Total reflection 
phenomenon: this occurs when the 
wave passes from a medium with 
a higher refractive index (lower 
propagation speed) to one with 
a lower refractive index (higher 
propagation speed).
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Figure 8.13 The two vibrations 
add up at point P, giving rise to the 
phenomenon of interference.
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Using the sum-to-product trigonometric formula Eq. (M1.17), we can obtain 
the amplitude R and the phase ϕ of the resulting wave:

 2 12π( )
2 2cos

x x
R A

λ
�

� � , (8.16)

  2 1)π(
.

x x
λ
�

��  (8.17)

The amplitude R therefore depends on the phase difference between the two 
waves at the point where they meet. Specifically, when this difference is equal to 
zero or a multiple of 2π, we have a resulting amplitude R = 2A (constructive in-
terference), while when it is equal to an odd multiple of π the cosine in Eq. (8.16) 
is –1 and the amplitude R = 0 (destructive interference), as shown in Figure 8.14.
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Figure 8.14 a) The vibrations 
are in phase, the interference is 
constructive, and a vibration of the 
same frequency and double amplitude 
is generated (blue curve S). b) The 
vibrations are in phase inversion 
and the interference is destructive, 
resulting in an absence of vibration (if 
the amplitudes of the two waves are 
equal; blue line S). c) The vibrations 
are in phase quadrature and a 
vibration with the same frequency is 
generated, out of phase by π/4 and 
with an amplitude equal to 2A (blue 
curve S).

To obtain the simple result of Eq. (8.15), it is mandatory the waves must be 
coherent. If the two vibrations do not have the same frequency, the result of 
their interference is more complicated. Two particular cases of interference are 
described below.

 8.6.1 Standing waves

For simplicity, let us consider two waves with equal frequency (mono-chromat-
ic), equal amplitude, generated at two points separated by a multiple of their 
wavelength, with zero phase difference Δϕ, and traveling on the same line, but 
in the opposite direction. Their sum in general is (applying the sum-to-product 
identity, Eq. (M1.17)):

1 2

2π 2π
sin 2π sin 2π 2 cos sin .

x tt x t xS S S A A A
T λ T λ λ T

� � � �� � � �� � � � � � �� � � �� � � �
� � � �� � � �

 (8.18)

The resulting wave is called a standing wave. It differs from a traveling wave 
(Figure 8.15a) since the space variable x and time variable t are separated in the 

See MATH INSET 1.2 
Mathematical functions (p. 15)
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arguments of the different sinusoidal functions. The standing wave is depicted 
in Figure 8.15b, in which there are fixed points where the amplitude is zero 
(nodes) and points where the amplitude reaches maximum values   at different 
times (antinodes). 

Figure 8.16 shows some examples of standing waves along a string with fixed 
ends and in open-ended pipes: when persistent standing waves are formed in me-
chanical systems (strings, pipes or other more complex ones) the system is said to 
be in resonance. This effect occurs in wind or stringed musical instruments and 
also in the functioning of the basilar membrane in the inner ear (Paragraph 8.9.2).

Harmonic frequencies in the piano
Which are the frequencies of the first 3 harmonics of the longest string of a piano 
(length 1.98 meters) being the wave propagation speed on the string of 134 m  s– 1?

Solution
The string is fixed at both ends (see Figure 8.16a) and therefore the first harmonic 
has a wavelength equal to 2 ℓ. The frequency for this harmonic is therefore:

 υf
1

1
134 ms

33.84 Hz.
2 2 1.98 m

�

� � �
�ℓ

The second and third harmonic will be respectively f2 = 2 · 33.84 Hz = 67.68 Hz and 
f3 = 3 · 33.84 Hz = 101.52 Hz (all very low tones).

SOLVED PROBLEM 8.1

a)

S

O

propagation direction
t2

t2

x

t1

t1

b)

S

O t2 x

λ
––
2

t1

t3

Figure 8.15 a) Traveling wave 
represented at successive times  
t1 > t2. b) Standing wave represented 
at successive times: t1 < t2 < t3. At 
each point on the x coordinate there  
is a vibration with the same frequency; 
vhowever, its amplitude depends on 
the position on the x coordinate. 

a) b)

3
2

λ = 2ℓ

λ = ℓ

λ = 2ℓ

λ = ℓ

λ = –– ℓℓ
2

λ = ––

2
3

λ = –– ℓ

ℓ ℓ

Figure 8.16 a) Standing waves on 
a string attached at both ends. The 
points of no displacement are nodes. 
b) The same phenomenon occurs in 
pipes, whether they are closed or open 
at the ends.
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 8.6.2 Beats

Now let us consider the superposition of waves with slightly different frequencies 
at fixed position. To simplify the calculations, we will consider two vibrations 
with zero phase and with the same amplitude. On calculating the sum and ap-
plying the appropriate trigonometric formulas (see Eq. (M1.17)), the resulting 
wave turns out to be

 

 S S S A f t A f t

A f t f t

f t

f f

f tf

1 2 1

1 2 1 2

2

2

1

sin(2π ) sin(2π )
1 12 cos [2π( ) ] sin [2π( ) ]
2 2
2π Δ 2π(

2 A cos sin .
2 2

)

� � � � � � �

� � � �� � � �� � � �
� � � �

� � �� � � �
� �� � �

� �

�


� �


  (8.19)

This result involves a sinusoidal vibration at an average frequency between the 
original frequencies (f1 + f2)/2, whose amplitude varies as the cosine with a fre-
quency equal to half the difference Δf/2 between the two component vibrations. 
With two very close original frequencies the variation of the overall amplitude 
occurs very slowly (long period) even if with a frequency practically similar to 
the original ones (as shown in Figure 8.17).

Beats from a siren
A siren emits two sounds with frequencies f1 = 1000 Hz and f2 = 1004 Hz. Evaluate 
the resulting sound.

Solution
The two frequencies are almost equal and therefore we can apply the Eq. (8.19) which 
gives a frequency equal to the average value of the two frequencies:

  1000 Hz 1004 Hz
2
�

 = 1002 Hz,

a fixed frequency practically indistinguishable from the initial frequencies. The am-
plitude of the sound at this frequency varies in a pulsatile manner (Eq. (8.19)):

  1004 Hz 1000 Hz
2
�

 = 2 Hz,

with a periodicity of 0.5 second, therefore relatively slowly. The ambulance siren, 
the sound of which increases and decreases in intensity, is the result of a similar sum 
of sounds.

SOLVED PROBLEM 8.2

1
––
f

O
a)

O

S

b)

S2, S1 t2 t3t1

t

t

2
–––ΔfT = T =

Figure 8.17 a) Two waves of slightly 
different frequency which are in phase 
at time t1, in phase opposition at time 
t2 and at time t3 are again in phase 
agreement. b) Resultant wave of the 
two shown in a). The frequency of 
the rapid oscillation is about the same 
as that of the original waves, but the 
amplitude is modulated and follows 
the dashed envelope with a very low 
frequency wave.

See MATH INSET 1.2 
Mathematical functions (p. 15)
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8.7  Wave polarization
The phenomenon of polarization occurs only in the case of transverse vibrations. 
A transverse wave may be the result of the superposition of many waves, each with 
a random orientation of the vibration direction (Figure 8.18a). When the wave is 
linearly polarized (Figure 8.18b) the vibration occurs only in a specific direction. 
The plane in which the oscillation occurs is called the plane of vibration. When 
the wave is circularly polarized, the plane of vibration rotates with a constant 
angular velocity. Polarization of a wave can be obtained by means of specific filters.

In medicine polarization is mainly used in optical applications (see Para-
graph 10.6).

S
u0 O

RR1

propagation direction

vibration plane

a) b)

y

z

x

S

y

z

x

S

Figure 8.18 Schematic representation 
of a) a non-polarized wave and 
b) a rectilinearly polarized wave. In 
both cases S is the physical vibrating 
quantity.

Figure 8.19 Wavefronts emitted by 
a stationary source and received by 
an observer (point O) moving towards 
it. In time Δt, in addition to receiving 
the waves emitted by the source, 
the receiver also receives the waves 
contained in the segment OR1, which 
travel in the same time interval Δt.

8.8  Doppler effect
When a source emits a wave of frequency fs, the frequency f that reaches a re-
ceiver depends on the state of motion of both the source and the receiver. This 
phenomenon is called the Doppler effect and has wide applications in diagnostic 
medicine (e.g., to measure blood velocity by means of ultrasound waves).

In the following, we will use u to indicate the velocity of the receiver or of the 
source, and υ to indicate the propagation velocity of the wave in the medium. 
We will assume that the value of u is always much lower than that of υ.

Let us first consider the case in which the source S is stationary and the re-
ceiver O moves towards the source at a velocity uo (Figure 8.19). If the receiver 
were stationary, in one second it would detect a number of passing crests equal 
to the frequency fs included in the segment OR = fs  λ. If the receiver moved to-
wards the source at speed uo, it would detect a higher number of crests: not only 
the ones included in the segment OR, but also those included in the segment 
OR1 = uoΔt (Δt = 1 s). In total, in one second it would receive all the waves con-
tained in the RR1 segment. The corresponding frequency (i.e., the number of 
crests detected per second), as in Eq. (8.6), is

 os1 o so o
o s s s 1 ,

λ
λ λ λ

f uRR u fu uf f f f
υ υ

�
� � � � ��� �

�
� �

�
� �  (8.20)

the frequency fo perceived by the reciever is therefore greater than that emitted 
by the source fs.

The change in frequency is

 Δf = fo – fs =  s o .
f u
υ

 (8.21)
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In the second case, the receiver is stationary and the source moves towards it 
with velocity us. Let S be the position of the source and O that of the observer 
(Figure 8.20). When the source has finished a complete vibration (i.e., after a 
period T), the point S has moved forward by a distance us  T and the wavelength 
λο perceived by the observer will not be λs but λο = λs – us  T. Since T = λs/υ we 
therefore have

 λο = λs – s sλu
υ

 = λs  
 u

υ
s1 .� ��� �

� �
 (8.22)

On expressing the wavelengths in terms of frequencies we have

 fo = fs  
s

.υ
υ u�

 (8.23)

The change in frequency in this case is given by

 Δf = fo – fs = fs  s

s

.u
υ u�

 (8.24)

Ultimately, in both cases, the frequency received by the observer is greater than 
that emitted by the source. In the case of sound waves, if the source and/or re-
ceiver move towards each other, the perceived sound has a higher pitch.

If the receiver moves away from the fixed source or the source moves away 
from the stationary receiver, the signs of the uo and us velocities in the above 
relations must be changed and, in both cases, the frequency received by the 
observer decreases.

When both source and receiver are moving, the general formula is

 

u
υf f
u
υ

o

o s
s

1
.

1

�
�

�
 (8.25)

S
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S1

S1

S2
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S3

S3

λS

λR
uS

Figure 8.20 Wave fronts emitted by 
a source moving at a speed us towards 
a stationary receiver. The crests are 
closer together and the resulting 
wavelength is less than λs.

Distance and velocity from echo
A bat moves towards a stationary obstacle emitting sounds at the frequency of 50 ·103 
Hz and detects, after 0.06 s, a reflected sound at the frequency of 51 ·103 Hz. How far 
is it from the obstacle and at what speed is the bat moving? (Assume sound velocity: 
340 m  s–1.)

Solution
We have a moving source (the bat) with a stationary obstacle (a wall): the frequency 
change between the obstacle and the source fo – fs caused from the Doppler effect is 
given by Eq. (8.21):

 fo – fs = fs  
 .u
υ

The ultrasound wave is reflected by the obstacle at a frequency fo and is detected 
by the approaching bat at a frequency fr. In this case, the frequency change fr – fo is 

SOLVED PROBLEM 8.3
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As we have already mentioned, light is a form of wave and, as such, it is also 
subject to the Doppler effect. The correct formula for light (relativistic Doppler 
effect) is

 o s

1 /
,

1 /
υ c

f f
υ c

�
�

�
  (8.26)

where c is the speed of light and υ is the relative velocity between the source 
and the observer (it does not matter which of the two is moving). In the case of 
light, too, if the source and/or receiver move towards each other (positive υ), 
the frequency of the light wave is higher. This means that the observed light has 
a different color (see Paragraph 9.9 and Paragraph 10.2).

8.9  Sound waves, infrasounds and ultrasounds

 8.9.1 Sound waves

Small deformations in an elastic medium produce reaction forces that tend to 
bring the medium back to its equilibrium configuration. If a region of the me-
dium is compressed (e.g., by the action of the oscillating membrane of a loud-
speaker), reaction forces will cause it to expand, compressing the neighboring 
regions (Figure 8.21). The resulting propagating disturbance is a sound (also 
called acoustic) wave.

Sound waves are therefore elastic mechanical waves in a medium. If the me-
dium is a gas or a liquid, the sound waves are longitudinal pressure waves. In 
the case of solids, sound waves can be both longitudinal (pressure waves) and 
transverse (shear waves).

The human ear is able to perceive acoustic waves propagating in air at fre-
quencies between 20 Hz and 2 ·104 Hz. Below 20 Hz, these vibrations are called 
infrasounds, above 2 ·104 Hz, they are called ultrasounds.

Pure sounds are simple harmonic vibrations, while complex sounds are su-
perpositions of harmonic waves. 

given by Eq. (8.24):

 fr – fo = fo  .u
u υ�

The total change fr – fs is obtained eliminating fo in these two equations (deriving fo 
from the first equation and introducing it in the second one), with the result

 fr – fs = fs  
2 ,u
υ

from which we have

  f f υu
f

3 3 1
r s 1 1

3
s

(51 50 ) Hz 
12.24 km h .

10 10 340 m s( )
3.4 m s

2 50 12 0

�
� �

� � �
�

�

��
� �

�
�

The ultrasound wave at the speed of 340 m  s–1 travels in 0.06 seconds a distance of 
d = υ  Δt = 340 m  s–1 · 0.06 s = 20.4 meters; as it has to travel from the bat to the obstacle 
and then back to the bat, the obstacle is located at a distance of 20.4/2 = 10.2 meters.

SOLVED PROBLEM 8.3

xO

∆po

pa

–∆po

p

rarefaction compression

Figure 8.21 Schematic figure of areas 
of compression and rarefaction. In the 
propagation of a sound wave in a gas, 
pressure variations are caused by the 
harmonic motion of the gas molecules. 
This is caused by the piston moving 
back and forth in harmonic motion.
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The pitch of a sound is proportional to its frequency. The timbre of a sound 
depends on the shape of the vibration and therefore on the amplitude of its 
harmonic components, as shown by Fourier analysis. 

The sound intensity, defined in general terms in Paragraph 8.4, depends on 
the energy carried by the sound wave; from Eqs. (M8.2), (M8.4) and (8.10), this 
depends on the sum of the squares of the amplitudes of the simple vibrations 
that make up the complex sound.

A harmonic sound wave can be described by the formula

 Δp(t) = Δpo  sin (ω  t + ϕ), (8.27)

where Δp(t) = p – pa is the instantaneous variation of the pressure p with respect 
to the atmospheric pressure pa and Δpo is the amplitude of the pressure pertur-
bation.

On applying the instantaneous sound pressure (Eq. (8.27)) to the piston in 
Figure 8.22, we see that the air mass in the pipe is set in oscillatory motion. By 
means of the second law of dynamics (Eq. 1.17), we obtain

 Δ ,
Δ
mu

pS
t

�  (8.28)

where u is the instantaneous speed of the piston with a surface S. By introducing 
the density of the gas d = m/V =   m/(S  Δℓ) (Δℓ is the length of the pipe containing 
the mass m of gas), we obtain

  ud
p udυ

t
ℓΔ

Δ ,
Δ

� �  (8.29)

where υ = Δℓ/Δt is the velocity of the wave in the gas.
If A is the amplitude of the oscillatory motion of the piston, the velocity 

u = u(t) is sinusoidal with amplitude A · ω (see Eqs. (1.14) and (8.9)); we there-
fore obtain the following relationship between the amplitudes of Eq. (8.27) 
and Eq. (8.29):

 Δpo = A  ω  d  υ. (8.30)

Notice that the change of pressure in a sound wave is proportional to the density 
of the medium and to the velocity of sound in that medium.

 8.9.2 Sound wave velocity and intensity

If a sound wave propagates in an ideal gas, its velocity υ depends only on the 
absolute temperature T:

 
 

,aγRT γpυ
M d

� �   (8.31)

where γ is the cp/cv ratio, R the constant of the ideal gases and M the molecular 
weight of the gas. Sound travels faster in a gas at higher temperature, higher 
pressure, or lower density.

Furthermore on applying Eq. (8.10) to a sound wave traveling through the 
volume shown in Figure 8.23, the energy transported is

 E = 
1
2

  ω2  m  A2 = 
1
2

    ω2 V  d  A2 = 
1
2

    ω2  S  υ  Δt  d  A2. (8.32)

∆x

∆ℓ

S pa

Figure 8.22 Air at atmospheric 
pressure pa inside a pipe is compressed 
by a piston with a surface S, giving rise 
to a sound pressure wave.

See MATH INSET 8.1 
Fourier (or harmonic) analysis 
(p. 182)

υΔt

S

Figure 8.23 A sound wave 
propagating through a surface S 
at velocity υ travels a longitudinal 
distance υ  Δt in the time interval Δt. 
The volume through which it travels is 
therefore S  υ  Δt.
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On dividing Eq. (8.32) by S  Δt, we obtain the intensity of the sound wave I de-
fined in Paragraph 8.4:

 2 21 ,
Δ 2
EI υdω A

S t
� �  (8.33)

which we can also write in terms of pressure amplitude by using Eq. (8.30):

 
2
oΔ1

2
pI

υd
�  (8.34)

from which we obtain the relationship between sound intensity and sound pres-
sure amplitude

 oΔ 2 .p Iυd�  (8.35)

Sound velocity in Helium
Evaluate the velocity of sound in helium at 32 °C. The helium molecular weight is 4 
and the γ ratio is 1.66.

Solution
On applying Eq. (8.31), and remembering that the Boltzmann constant kB = R/No (see 
Paragraph 5.5) and the mass of a molecule is given by its molecular weight divided 
by Avogadro’s number, we have

 
 γk Tυ

m

23 1
B 1

3 23 14
1.66 1.38 10  JK 305 K

1025.4 m s
10  kg (6.02 10 )

� �
�

� �

� � �
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� � �

This is almost three times the speed of sound in air. Breathing a mixture of air in 
which nitrogen has been replaced by helium has a weird effect on our voice. Sound 
is produced by the vocal cords in our voice box, and then travels to the mouth. The 
shape of the mouth amplifies certain frequencies and plays a major role in deter-
mining the timbre of our voice. Since sound travels faster in helium than in air, the 
mouth amplifies higher frequencies than normal, altering the timbre of our voice 
and making it sound squeaky.

SOLVED PROBLEM 8.4

 8.9.3 Sound frequency spectrum

Figure 8.24 shows the spectrum of sound waves. Infrasounds are vibrations 
with a frequency lower than 20 Hz. These vibrations are characterized by the 
ability to propagate over long distances and to circumvent obstacles without 
dissipating much energy.

Figure 8.24 Frequency spectrum 
of mechanical waves: the frequency 
scale is logarithmic. The range of 
frequencies perceptible to the human 
ear is shown in blue. Acoustics 
describes the characteristics of sounds.

0.02 Hz

infrasound ultrasoundsound
(acoustics)

20 Hz 20 kHz

low notes

20 MHz 200 GHz

animals diagnostic
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Ultrasounds have frequencies above 2 ·104 Hz and are artificially produced by 
means of particular piezoelectric crystals, which can also act as ultrasound de-
tectors. Piezoelectric crystals can be rapidly deformed by the application of an 
electric voltage and conversely produce an electric voltage when deformed.

As explained in Paragraph 8.4, a very important feature of all kinds of vi-
bration is their directionality, which is proportional to their frequency. This 
implies that at high frequency (1÷10 MHz and beyond) ultrasound propagates 
as a very collimated sound beam.

Infrasound produced by sea waves
A cork floating in the sea completes one oscillation every 5 seconds: evaluate its 
frequency. If the distance between two successive wave crests is 4 meters, evaluate 
their propagation velocity.

Solution
The inverse of the period gives the resulting frequency:

 f = T–1 =  1
5 s

 = 0.20 Hz.

The frequency is therefore that of an infrasound. The wave velocity is given by the 
relation

 υ = λ  f = 4 m · 0.20 s–1 = 0.8 m s–1 = 2.88 km/h.

As the sea wave propagates, it acts on the molecules of the air, causing an infrasonic 
pressure vibration that is not audible by human hearing in terms of frequency and 
intensity. Infrasonic vibrations of high intensity are easily perceived in the disco as 
pressure waves on the chest. 

SOLVED PROBLEM 8.5

 8.10  Sound sensation and the ear

 8.10.1 Sound sensation

In humans (and in other animals) sound is detected by the ear, which we will 
describe in the next paragraph. First, we need to discuss the concepts of sound 
intensity, intensity level and loudness.

 The ear is a very sensitive device. For example, during a conversation of me-
dium intensity, as reported in Table 8.1, we have I = 10–6 W/m2, d = 1.2 kg/m3, 
υ = 340 m/s: from the relation (8.35) we have a variation in pressure on the 
eardrum in the order of Δpo = 3 ·10–2 N/m2.

Since the value of atmospheric pressure is 1 atmosphere = 105 N/m2, it fol-
lows that, during the conversation, the human ear is able to perceive pressure 
fluctuations in the order of 1 part in 10 million!

Taking Table 8.1 as a reference, the most violent sound that the human ear 
can tolerate is about 10 N/m2 (10–4 atmospheres), while the hearing threshold is 
about 10–5 N/m2 (= 10–10 atmospheres); this means that the human ear can per-
ceive pressure variations of 1 part in 10 billion! It is interesting that the collisions 
of air molecules on the eardrum membrane due to thermal agitation cause pres-
sure variations of about 10–11 atmospheres, only a tenth of the hearing threshold.
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In conclusion, the ear is able to perceive sound pressure differences in the order 
of one part in 1010 and the extension of the sound pressure amplitude covers 6 
orders of magnitude. This enormous extension imposes limitations on the audi-
tory system’s ability to distinguish between different sound pressure vibrations.

The relationship between sound intensity and perceived sound sensation σ is 
logarithmic: two sound intensities are perceived as different only if the difference 
exceeds a fixed minimum value, which is proportional to the intensity I:

 ΔI ≥ ε  I, (8.36)

where ε = 10–1. This inequality, known as Weber-Fechner law, expresses the fact 
that the human ear is capable of appreciating variations in sound intensity that 
are smaller than the lower sound intensity I. From these considerations it seems 
logical to assume the following relationship between the minimum variation in 
sound sensation σ and the minimum variation in sound intensity I:

 ΔI = Δσ  I,       from which        Δσ = 
Δ ,I
I

 (8.37)

which, considering ΔI and Δσ as differentials and integrating them, yelds the 
sound intensity level IL:

 IL = σ – σo = 10 Log  ,
o

I
I

 (8.38)

where a base-10 logarithm is introduced and the factor 10 is included for con-
venience and convention. The Io value represents the minimum sound intensity 
that can be detected by the human ear and corresponds to 10–12 W/m2 (from 
Eq. (8.38) this corresponds to sound intensity level IL = 0 and σo is the value of 
sound sensation when I = Io). The unit of measurement of sound intensity level 
expressed by Eq. (8.38) is the decibel (dB) (the official unit of measure is the 
bel, corresponding to 10 dB). The sound intensity level is usually expressed in 
decibels as shown in Table 8.1.

The sound intensity level is related to the intensity of the sound wave, inde-
pendently of its frequency. However, the human ear is more sensitive to sounds 
with frequencies between 3000 and 4000 Hz. To describe this phenomenon we use 
the concept of loudness. Figure 8.25 shows curves of equal loudness as a function 
of frequency. A 70 dB sound at 4000 Hz is perceived as loud as a 90 dB sound at 
60 Hz. The unit of measurement of loudness is the phon: a sound with a loudness 
of 10 phon is as loud as a sound with an intensity level of 10 dB at 1000 Hz. 

Table 8.1 Sound intensity and sound sensation.

Sources I (watt  m–2) σ (dB)

whisper at 1 m distance 10–10 20

average home noise 10–8 40

normal conversation 10–6 60

scream 10–5 70

noisy traffic 10–4 80

siren at 30 m 10–2 100

pneumatic drill at 1 meter (threshold of pain) 1 120

jet airplane at 30 m (severe pain) 102 140

bursting of eardrums 104 160



© 978-88-08-32046-9 199  8.10 | Sound sensation and the ear

Sound intensity from a jet at high altitude
A jet flying at an altitude of 4000 meters produces a sound of 40 dB on the ground. 
Calculate the sound intensity level if the altitude was 500 meters (assume that the 
total sound energy produced does not change).

Solution
From Eq. (8.38), 40 dB gives: I4000 = 104 · Io. The sound intensity at 500 m is (from 
Paragraph 8.4): I500 = (4000/500)2 · 104 · Io = 64 · 104 · Io, so the sound intensity level at 
this altitude, according to Eq. (8.38), is

 IL = 10 Log[64 · 104] = 58.06 dB.

SOLVED PROBLEM 8.6

Maximum tolerable sound pressure
The maximum amplitude Δpo of a sound wave that is still tolerable by the human ear 
is about 28.5 pascal. (1) What fraction of normal atmospheric pressure at sea level 
does this value correspond to? (2) To what sound intensity does this Δpo value in air 
corresponds, assuming an air density of 1.29 kg  m–3 and a speed of sound of 340 m  s–1?

Solution
(1) Since the normal atmospheric pressure is 1 atm = 1.01 ·106 barie = 1.01 ·105 Pa, 
we have

 o 4
5

Δ 28.5 Pa 2.82 10 .
1.01 10  Pa

p
p

�� � �
�

Thus, even very loud sounds correspond to pressure fluctuations which are a very 
small fraction of the atmospheric pressure.

(2) On applying Eq. (8.34) we obtain intensity I:

  2 2
o 2

3 1

Δ (28.5 Pa) 0.926 Wm .
2 2 1.29 kg m 340 m s
pI
dυ

�
� �
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� �

SOLVED PROBLEM 8.7

normal conversation

audibility
threshold

curves
of equal
loudness

pain threshold
in

te
n

si
ty

 lo
u

d
n

es
s 

(d
B

)

0

140

120

100

80

60

40

20

0

31.5 63

10

30

50

70

90

110

130

phon

125 250 5001000
f (Hz)

4000 16 000

Figure 8.25 Curves of equal loudness 
as a function of frequency. A sound 
with intensity level 80 dB at 1000 
Hz has a loudness of 80 phon. A 
sound with the same intensity level 
at 4000 Hz has a loudness of 90 
phon, because the human ear is more 
sensitive at that frequency.
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 8.10.2 Ear and sound transmission

The ear is the transduction device that enables sound waves to be transformed 
into signals of nervous excitation (action potentials), which are then processed 
and organized by the brain in order to provide understandable sound sensations 
(spoken language, music, environmental sounds and so on). From a functional 
point of view, the ear can be divided into three successive parts: external, middle 
and internal (Figure 8.26).

The external ear is made up of the pinna and the auditory canal, which collect 
sound and channel it towards the eardrum. The auditory canal is, in practice, a 
resonator and can be schematized as a tube closed at one end by the tympanic mem-
brane (see Figure 8.16b). It is therefore the site of stationary waves (Paragraph 8.6.1), 
allowing the mechanical vibration to be maintained over time. The fundamental 
frequency in adults is between 3000 and 4000 Hz (see Solved problem 8.8), in agree-
ment with the loudness diagram in Figure 8.25. If the tympanic membrane were 
rigid, the auditory canal would only resonate at the frequency of about 3400 Hz 
or odd multiples of this value. In reality, the membrane is elastic enough to cause 
resonances at lower and higher frequencies, as shown in Figure 8.27.

pinna

external
auditory
canal

eardrum

hammer
(malleus)

anvil
(incus)

oval
window

round
window

acoustic
nerve

cochlea

vestibular
nerve

ampoule

semicircular
canal

stirrup
(stapes)

middle
ear

Eustachian
tube

Figure 8.26 Schematic representation 
of the anatomy of the human ear. 
Observe the three-dimensional helical 
structure of the cochlea. The figure 
also shows the semicircular canals 
involved in the sense of balance.

Figure 8.27 At a frequency around 
3400 Hz there is a peak in the 
frequency response of the ear. A 
secondary peak occurs near 10 000 
Hz (about 3 · 3400 Hz). The first peak 
indicates that the ear is specifically 
tuned to the human voice.
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In the middle ear, the function of the three ossicles (malleus, incus, and sta-
pes) is to transmit the sound vibration to the oval window by amplifying it. 
The ossicles act as an advantageous lever of the 1st type in which the distance δi 
between the eardrum and the fulcrum is approximately 1.3 times the distance δf 
between the oval window and the fulcrum (Figure 8.28).

The equilibrium condition described in Eq. (2.9) becomes

 f i

i f

1.3,F δ
F δ
� �  (8.39)

from which, as the area of   the eardrum Si is about 20 times greater than that Sf of 
the oval window, we obtain a pressure amplification factor on the oval window of

 f f i i i

i i f f f

1,3 20 26.p F S δ S
p FS δ S
� � � � �  (8.40)

Harmonic frequencies in tubes
Calculate the fundamental frequency and the first two successive harmonics in two 
tubes: (1) one closed at both ends and (2) one closed at only one end. Both tubes are 
7.7 cm long and the sound velocity is 340 m  s–1.

Solution

(1) The first harmonic has a wavelength that is twice the length of the tube 
(Figure 8.16); the corresponding frequency is 340 m  s–1/0.154 m = 2207.8 Hz and 
the successive harmonics are f2 = 4415.6 Hz and f3 = 6623.4 Hz.

(2) The first harmonic has a wavelength 4 times the length of the tube (Figure 8.16); 
the corresponding frequency is 340 m  s–1/0.308 m = 1103.9 Hz and the successive 
harmonics are f2 = 2207.7 Hz and f3 = 3311.7 Hz.

SOLVED PROBLEM 8.8

Ear canal harmonic frequencies
Calculate the fundamental harmonic frequency in an auditory canal about 2.6 cm 
long in an adult subject. The sound velocity is 340 m  s–1.

Solution
The auditory canal is closed by the eardrum: we therefore have a tube that is open at 
one end and closed at the other. The wavelength of the first harmonic is

 λ = 4 · 2.6 cm = 10.4 cm.

The corresponding frequency is

  
1340 m s

3269.2 Hz,
0.104 m

υf
λ

�

� � �

which is in the range of frequencies of spoken language.

SOLVED PROBLEM 8.9

Figure 8.28 a) The action of the 
three ossicles—hammer (malleus), 
anvil (incus), stirrup (stapes)—of the 
middle ear is to amplify the pressure 
from the eardrum to the oval window. 
b) Diagram of the advantageous 1st 

type lever in the middle ear.
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This amplification factor is necessary in order to compensate for the loss of 
sound intensity that would otherwise occur when passing from air in middle 
ear to liquid in the inner ear cochlea.

Finally, the inner ear is made up of a spiral-shaped canal about 3.5 cm long 
(cochlea). Inside it, (Figure 8.29) and along its entire length, there is a mem-
brane (basilar membrane) on which the organ of Corti is located; this enables 
mechanical vibrations to be transduced into action potentials.

If we assume that the intensity of the sound wave (at a given frequency) 
arriving at the oval window I1 and that of the sound wave propagating from the 
oval window to the cochlear fluid (perilymph) I2 remain constant, on applying 
Eq. (8.33) we have

 I1 = 
1
2

  d1  A1
2  υ1  ω2 = I2 = 

1
2

  d2  A2
2  υ2  ω2, (8.41)

where d1 and d2 are the densities of the two media (air and perilymph), A1 and A2 
are the amplitudes of the sound vibration in these media, and υ1 and υ2 are the 
velocities of the vibration, respectively (d2 = 1000 kg m–3, υ2 (water) = 1527 m  s–1, 
Table 12.4). Therefore, the ratio between the amplitudes of vibration in the two 
media must be

 
 d υA
A d υ

3 1
2 21

3 1
2 1 1

60.
1000 kg m 1527 ms
1.2 kg m 340 ms

� �

� �
� � �  (8.42)

This damping factor is partially compensated for by amplification in the middle 
ear, described in Eq. (8.40). Technically, we say that the impedance of the air-
to-perilymph interface is high, and that the ossicular system of the middle ear 
acts as an impedance adapter1.

vestibulocochlear
nerve

tectorial
membrane

nerve �bersouter hair cellsbone

cochlea (section)

organ of Corti

organ of Corti

cochlea

oval
window

Figure 8.29 Anatomical section of the human cochlea with subsequent enlargements of its parts. The vestibular duct (scala vestibuli) and tympanic 
duct (scala tympani) are filled with perilymph, while the cochlear duct contains endolymph. Hair cells with stereocilia are arranged between the two 
membranes, basilar and tectorial (note their microscopic dimensions). The stereocilia can be mechanically excited at different frequencies according 
to their length (Paragraph 8.6). Their excitation, determined by the acoustic wave propagating in the perilymph and in the endolymph, generates 
action potentials in the cells of the acoustic nerve.

1 Like mechanical impedance (Paragraph 4.10) and electrical impedance (Paragraph 9.7), acoustic 
impedance can be defined by referring to the transmission of sound waves in free media or through 
the interface between two different media, as described in Paragraph 12.7.1.
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As a sound wave enters the cochlea and propagates through the perilymph, 
the basilar membrane vibrates. Depending on the frequency of the sound, the 
amplitude of the vibration of the membrane has a maximum value at different 
positions (closer to the beginning of the cochlea for higher frequencies, further 
inside the cochlea for lower frequencies).

In the inner ear, inside the organ of Corti, there are hair cells with microscopic 
protuberances (stereocilia). From Helmoltz theory the stereocilia resonate accord-
ing to their tension and length as fixed strings at the ends (see Paragraph 8.6.1). 
The movement of the basilar membrane causes the sterocilia to brush against the 
tectorial membrane, stimulating various nerve fibers, which transmit action poten-
tials (see Paragraph 7.13 and Paragraph 7.14) to the brain via the cochlear nerve.

 8.11  Stethoscope and body sounds
The stethoscope, or phonendoscope, is perhaps the most famous symbol of 
medical professionals. This acoustic device allows doctors to listen to the internal 
sounds produced by the human body, especially those coming from the heart and 
lungs. The forerunner of the modern stethoscope was invented by the French 
physician R. T. H. Laënnec in 1818.

This instrument (Figure 8.30) consists of a headset with two eartips, two metal 
tubes connected to a flexible tube, and a chestpiece. Modern devices usually have 
a dual-head chestpiece with an open bell and a drum, i.e., a bell closed by a thin 
diaphragm. The open bell is more sensitive to low-frequency sounds, while the 
drum is used for high-frequency sounds, as shown in Figure 8.31. The frequency 
of maximum sensitivity of the drum depends on the thickness and material of the 
diaphragm. In the case of the open bell, sensitivity depends on its shape and on 
how firmly it is pressed against the skin, which effectively acts as a diaphragm.

eartips

tube

open bell

diaphragm

valve

closed bell

Figure 8.30 A modern stethoscope.

so
u

n
d

 in
te

n
si

ty
 (

d
B

)

120

100

80

60

40

20

0

10
frequency (kHz)

heart
sounds

lung
sounds

104103102

audibility 
limit Figure 8.31 Most heart sounds are 

of low frequency, in the low sensitivity 
range. Conversely, lung sounds 
generally have a higher frequency. 
Some heart and lung sounds have an 
intensity below the audible threshold, 
as shown in the figure.



Chapter 8 | Waves and acoustics © 978-88-08-32046-9204

 8.12  Ultrasound in medicine  
(diagnostic and therapy)

Ultrasonic vibrations are exploited in several medical applications. One of 
their main advantages is that ultrasound rays are highly collimated, owing 
to their high frequency, higher than one megahertz, as described at the end 
of Paragraph 8.9. For this reason, ultrasounds are used in sonography (i.e., 
ultrasound scans), as described in detail in Chapter 12 (Paragraph 12.7). In 
the remainder of this paragraph, we will describe an important diagnostic 
application of ultrasounds (Doppler flowmetry) and mention some of their 
many therapeutic uses.

 8.12.1 Doppler flowmetry

The Doppler flowmeter, shown in Figure 8.32, allows the measurement of the 
instantaneous velocity of blood. It consists of a probe that contains a piezoelectric 
transmitter (source), which produces an ultrasound wave with frequency fs aimed 
at the vessel in which the blood flow is to be measured. The ultrasound from the 
transmitter is reflected by the red blood cells, which are moving at velocity u, and 
is detected by a piezoelectric receiver contained in the same probe.

The probe is held at an angle θ to the vessel axis (Figure 8.32). The component 
of the velocity of the blood cells in the direction of the probe is

  u = – uθ = (–u  cos θ) (8.43)

(the minus sign is due to the fact that in Figure 8.32 the blood cells are moving 
away from the probe). The red blood cells act first as receivers of the sound 
produced by the transducer, then as emitters of a reflected sound.

Since they are moving in relation to the source, owing to the Doppler effect the 
red blood cells perceive a frequency of the ultrasound given by the relation (8.20) 
which we rewrite here as

 θuf f
υi s 1 ,� �� �� �

� �
 (8.44)

where υ is the speed of sound in the blood. The red blood cells then reflect 
the ultrasounds, acting as moving sources that emit a frequency fi. A receiving 
piezoelectric transducer (stationary observer) measures the frequency of the 
reflected ultrasound fr, which is again changed by the Doppler effect, as given 
by Eq. (8.23)

                                  fr = fi  
 

θ

υ
υ u�

 = fs  
 θυ u
υ
�

   
θ

υ
υ u�

 = fs  
 θ

θ

υ u
υ u
�
�

 =

                                   =  fs  θ θ θ

θ

υ u u u
υ u

� � �
�

 = fs  θ

θ

u
υ u
21 .

� �
�� ��� �

 
(8.45)

We can then obtain the difference in frequency between the emitted ultrasound 
and the received ultrasound:

 Δf = fs – fr = fs  
2 .θ

θ

u
υ u�

 (8.46)

skin

emitted 
ultrasound

gel
transmitter

probe

receiver

blood
vesselblood

cells
returning
echo

θ

Figure 8.32 The figure shows 
schematically how the Doppler 
flowmeter works. The ultrasonic beam 
emitted by the source is reflected by 
the surface of the moving erythrocytes. 
Owing to the Doppler effect, the 
frequency of the returning echo is 
different from that of the emitted 
sound. The device (probe) contains 
two piezoelectric crystals, one 
transmitting and one receiving.
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In conclusion, by measuring the frequency change it is possible to deduce the 
instantaneous velocity u of the blood in the vessel (the sound velocity υ is 
known, in practice the same as in water). Since the blood velocity is much 
lower than the sound velocity (u << υ), υ + uθ is approximately equal to υ, and 
Eq. (8.46) becomes

 Δf = fs – fr ≈ fs  
2 ,u
υ

 (8.47)

This is the formula normally used in flowmetry (see Solved problem 8.10). If 
we know the diameter of the vessel, it is possible to compute the flow rate in 
the vessel.

Doppler flowmetry
The average velocity of blood flow in an artery is 1.7 ·10–2 m  s–1. Calculate the fre-
quency change in a Doppler flowmeter with a 106 Hz frequency source (the speed of 
sound in the blood is 1570 m  s–1).

Solution
Using the expression (8.46) we have

 Δf = f  
6 2

1

1

2 1

10  Hz 2 1.7 10  m s2
1570 m s 1.7 10  m s

u
u υ

�

� � �

�� � �
�

� � �
 = 21.66 Hz.

But how can we distinguish two ultrasounds that are so close in frequency? These 
are frequencies emitted by the ultrasonic probe of f1 = 1 000 000 Hz and in the case 
of an approaching flow of f2 = 1 000 021.7 Hz!

It is a question of distinguishing 1 Hz out of a million Hz. Here, the beats from 
these very similar frequencies (f1 ≈ f2) come to our aid (Paragraph 8.6.2). Indeed, 
on adding the two ultrasounds, the variation in amplitude of the resulting ultra-
sound changes with a frequency equal to (f2 – f1)/2. Therefore, by measuring the 
changes in the resulting amplitude, it is easy to obtain the change in frequency, 
however small.

SOLVED PROBLEM 8.10

 8.12.2 Therapy

Ultrasounds can cause (at low intensity) a localized thermal effect (diathermy) 
in the tissues without damaging the cells.

Several ultrasound waves can be focused on the same point, thus creating 
a so-called shock wave (i.e., a high-intensity sound pulse). Shock waves can be 
used to shatter kidney stones (Shock Wave Lithotripsy, SWL). In this case, a 
device (called lithotripter) focuses ultrasonic rays on the patient’s stone, un-
der the guidance of real-time ultrasound scans (Figure 8.33). The shock wave 
pressure must be much greater than the resistance limit of the stone, but at the 
same time lower than the tolerance limit of biological tissues. The pressure 
values   on the stone are in the order of 50÷100 MPa (about 500÷1000 atm) for 
1÷5 μseconds.

The effect is similar to a hammer blow on the stone (as explained in Solved 
problem 8.11), shattering it to very small fragments, which are then removed 
by the urinary system.
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Lithotripter force acting on a kidney stone
A lithotripter exerts a pressure of 60 Mpascal on a spherical kidney stone with a di-
ameter of 7 mm. Compare this force with the force exerted on a body similar to the 
kidney stone by a hammer with a mass of 2.5 kg falling from a height of one meter.

Solution
The hammer of mass m, accelerating under the action of the weight force Fw, hits 
the body at speed υ. As the body is placed on a rigid, fixed surface, the hammer 
stops, owing to the instantaneous constraint reaction exerted by the surface, which 
is equal in modulus, but opposite to the force Fw. From Newton’s second law, we 
have, in modulus, Fw = –m  g = –m  Δυ/Δt, where g is the deceleration of the hammer, 
Δt is the time taken by the hammer to decelerate on contact with the body, which 
we can estimate as 0.005 seconds, and where Δυ is the change in speed following the 
impact. The final speed υf after the impact will be zero, while the initial speed can be 
calculated by applying the law of conservation of mechanical energy, described in 
Eq. (1.30): ½  m  υ2 = m  g  h, which gives

 2υ gh�  = 4.43 m  s–1.

The force Fw of the hammer is therefore

  1

w

2.5 kg 4.43 m sΔ
Δ 0.005 s
m υF

t

��
� �  = 2215 N.

The force Fp corresponding to a pressure of 60 MPa on a surface of S = π  r2 = 
= π  (0.35 cm)2 = 0.38 ·10–4 m2 is

 Fp = p  S = 60 ·106 Pa × 0.38 ·10–4 m2 = 2280 N.

Therefore comparing Fw and Fp, a single acoustic impulse from the lithotripter causes 
effects similar to those of a 2.5 kg hammer dropped from a height of one meter onto 
a stone of 7 mm in diameter.

SOLVED PROBLEM 8.11

Ultrasounds are used in dentistry to eliminate tartar, in ophthalmology in cat-
aract operations to destroy the lens (the fragments of which are eliminated by 
aspiration) and in cosmetic surgery to reduce adiposity. For the treatment of 
tumors, a technique called HIFU (High-Intensity Focused Ultrasound) has been 
developed to precisely destroy tissue by means of focused ultrasound absorption.

Figure 8.33 Piezoelectric crystal 
lithotripter. a) Operating diagram 
in which the parabolic matrix of 
piezoelectric elements and the 
ultrasound probe for control imaging 
are contained in a cushion filled with 
water in contact with the patient. 
The stone must be placed in the 
focus F. b) Overall view of the device 
with the radioscopic monitor and 
the ultrasound monitor, the probe of 
which is integrated into the system 
of piezoelectric emitters shown in a). 
(Credit: b) Siemens Healthineers AG.)

piezoelectric
sources

emitters

control
probes

stoneF

a) b)
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8.1  A 600 Hz tuning fork is at rest and an identical one 
is moving toward it. When excited, they produce a beat fre-
quency of 2 Hz. Calculate the velocity of the tuning fork in 
motion (velocity of sound υ = 343 m/s).

[υ = 2.29 m s–1]

8.2  An organ pipe, 1.2 m long and open at both ends, is 
placed next to another pipe, which is closed at one end and 
61 cm long. Given that each pipe resonates with its own 
fundamental harmonic, calculate the frequency of the beats 
(velocity of sound υ = 343 m/s).

[fbeats = 1.171 Hz]

8.3  An observer moves in the direction of a stationary 
source and perceives a frequency variation of 7% due to Dop-
pler effect. Determine the velocity of the observer (velocity of 
sound υ = 343 m/s).

[υo = 24.01 m  s–1]

8.4  Calculate the intensity of a sound wave in air in STP con-
ditions (speed of sound 340 m/s) if its frequency is 1300 Hz 
and its amplitude is 13 μm. The air density is 1.29 kg/m3.

[I = 2.47 W  m–2]

8.5  Two sounds have intensity of 25 and 670 microwatts/cm2 
respectively. How many decibel is the most intense sound 
greater than the other?

[σ = 14.28 dB]

8.6  In a room there are two loudspeakers. At a given point 
of the room a person receives the sounds from both sourc-
es and their intensity levels are respectively IL1 = 87 dB and 
IL2 = 87 dB (same value for the two sources). Which is the 
total Intensity Level heard by the listener?

[IL = 90 dB]

8.7  Calculate the pressure amplitude of a thunder whose 
intensity is 0.5 W/m2 (air density d = 1.29 kg/m3 and speed 
of sound = 343 m/s).

[Δp = 21.035 Pa]

8.8  An average frequency shift of 45 Hz is detected in 
a Doppler flow meter working with a 1.8 MHz frequency 
source. Calculate the average velocity of blood flow in the 
vessel (the speed of sound in the blood is 1570 m/s).

[υ = 1.96 cm/s]

PROBLEMS
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