Activity 1 Complete the following sentences with the options in the table below.

Hands-on glossary
set: insieme partition: partizione, suddivisione sequence: successione domain: dominio to lift: sollevare length: lunghezza range: immagine
c. A sequence is a function whose domain is the set of natural numbers and
d. $\int 15 t^{4} d t=$
e. A graph of a continuous function on an interval can
f. Functions can have "hills": places where \qquad
g. Functions can have "valleys": places where \qquad
h. $\int(\sqrt{2 t+1}+6) d t=$ \qquad
...they reach a local minimum value.
...be drawn without lifting the pencil from the paper.
...numbers between two given numbers.
$\ldots 3 t^{5}+c$
...set of points that divide the interval into subintervals of the same length.
...they reach a local maximum value.
...whose range is a subset of the real numbers.
$\ldots \frac{1}{3} \sqrt{(2 t+1)^{3}}+6 t+c$

Activity 2 Label the pictures using the underlined terms from Activity 1.

Mr. Riemann, the Director of Integration High School, is considering the cost of building some facilities at his school. Below is a potential plan for the new facilities. To calculate the cost of each option he needs to calculate the surface area to be cemented.

Activity 3 Use these formulas for calculating the areas or the statement to fill in the boxes in the figure above. Note the legend below the figure, on the right.
$A=l w \cdot A=\frac{1}{2} \pi r^{2} \bullet A=\pi a b$ - A new kind of formula is needed
Hands-ON GLOSSARY
facility: struttura
surface area: superficie
width: larghezza
to fill in: compilare.
riempire
radius: raggio
semi-minor axis: semiasse
minore
semi-major axis: semiasse
maggiore

Activity $4 \quad P$ is the region where a pool will be built. According to Mr.
Riemann, rectangles are the best way to estimate the area of P, which has a non-standard shape. Complete Mr. Riemann's notes by writing the following sentences under the corresponding picture.

Hands-on glossary
estimate: stima circumscribed: circoscritto inscribed: inscritto

This estimate of the area of P uses 2 circumscribed rectangles.
This estimate of the area of P uses 5 inscribed rectangles.
This estimate of the area of P uses 10 inscribed rectangles.
This estimate of the area of P uses a very large number of circumscribed rectangles.
This estimate of the area of P uses approximately 20 circumscribed rectangles.

Activity 5 Mr. Riemann made some interesting observations.

 Choose the two sentences that summarize Mr. Riemann's conclusions and write them in the thought balloons.a. The fewer the rectangles forming the union of rectangles, the more precise the estimate of the area of P.
b. The more rectangles forming the union of rectangles, the more precise the estimate of the area of P.

Hands-on glossary
fewer: meno
union of rectangles: plurirettangolo
more: più
narrow: stretto
wide: largo
to approach: avvicinarsi
c. The narrower the rectangles forming the union of rectangles, the more precise the estimate of the area of P.
d. The wider the rectangles forming the union of rectangles, the more precise the estimate of the area of P.

Activity 6 Use the words below to help Mr. Riemann complete his notes about the area of P. We will then listen to the recording to check activities 5 and 6 .

Listening

```
area - circumscribed - curve - greater - more - result - zero
```

To calculate the \qquad of the region under the \qquad , we could use inscribed or circumscribed union of rectangles.

The estimated \qquad is \qquad accurate if we use unions of rectangles
made up of a \qquad number of rectangles.

Moreover, as the bases of the rectangles approach \qquad in width, the area covered by
both the inscribed and the \qquad union of rectangles becomes almost the same.

This is the area of P.

Mr. Riemann has drawn two sketches of the pool, both containing five subintervals with the same uniform partition over interval $[a ; b]$. As you know, the black line represents the graph of a continuous and positive real function.

Activity 7 Using your prior knowledge, fill in the missing labels in both graphs below.

Activity 8 Write these sentences under the corresponding graph on the previous page. Some can be used twice.

a. The width of each subinterval can be indicated by: $\Delta x=\frac{b-a}{5}$.
b. In the inscribed union of rectangles, $f\left(x_{i-1}\right)$ represents the minimum $\left(m_{i}\right)$ of the function within each subinterval.
c. In the circumscribed union of rectangles, $f\left(x_{i}\right)$ represents the maximum $\left(M_{i}\right)$ of the function within each subinterval.
d. Each m_{i} represents the height of each inscribed rectangle.
e. Each M_{i} represents the height of each circumscribed rectangle.
f. The area of this union of rectangles is $s_{5}=\sum_{i=1}^{5} m_{i} \cdot \Delta x$.
g. The area of this union of rectangles is $S_{5}=\sum_{i=1}^{5} M_{i} \cdot \Delta x$.
h. The area of this union of rectangles is the lower sum.

i. The area of this union of rectangles is the upper sum.

Activity 9

Mr. Riemann has reached two more correct conclusions: which are they?

A

B

C

D

Activity 10 In this table, there are nine formulas for calculating the lower and the upper sums of a variety of partitions of interval $[a ; b]$.
Below, there are six graphs showing a variety of partitions of interval $[a ; b]$. Write the correct formula under the corresponding graph.

$$
\begin{array}{l|l|l}
\hline S_{10}=\sum_{i=1}^{10} M_{i} \cdot \Delta x & S_{20}=\sum_{i=1}^{20} M_{i} \cdot \Delta x & S_{5}=\sum_{i=1}^{5} M_{i} \cdot \Delta x \\
s_{5}=\sum_{i=1}^{5} m_{i} \cdot \Delta x & s_{20}=\sum_{i=1}^{20} m_{i} \cdot \Delta x & s_{10}=\sum_{i=1}^{10} m_{i} \cdot \Delta x \\
s_{15}=\sum_{i=1}^{15} m_{i} \cdot \Delta x & S_{30}=\sum_{i=1}^{30} M_{i} \cdot \Delta x & S_{15}=\sum_{i=1}^{15} M_{i} \cdot \Delta x \\
\hline
\end{array}
$$

(3) Lower and Upper Team Up osiel Lower Sums and Upper Sums

Activity 11

9		
\rightarrow	a. $s_{5}<\operatorname{Area}(P)<S_{5}$	(T) F
$\xrightarrow{3}$	b. $s_{5}<s_{10}<\operatorname{Area}(P)<S_{10}<S_{5}$	(T) F
-0	c. $S_{10}<\operatorname{Area}(P)<s_{10}$	T F
\Rightarrow	d. $s_{10}<s_{5}<\operatorname{Area}(P)<S_{5}<S_{10}$	(T) F
\Rightarrow	e. $s_{10}<s_{15}<\operatorname{Area}(P)<S_{15}<S_{10}$	T F
\bigcirc	f. $S_{20}<s_{5}<\operatorname{Area}(P)<S_{5}<s_{20}$	T F
\Rightarrow	g. $S_{10}<S_{15}<\operatorname{Area}(P)<s_{15}<s_{10}$	T F
\bigcirc	h. $s_{20}<s_{30}<s_{n \rightarrow+\infty}<\operatorname{Area}(P)<S_{n \rightarrow+\infty}<S_{30}<S_{20}$	T F
\rightarrow	i. $s_{30}<s_{n \rightarrow+\infty}<s_{5}<\operatorname{Area}(P)<S_{5}<S_{n \rightarrow+\infty}<S_{30}$	T F
\Rightarrow	j. $s_{n \rightarrow+\infty}<s_{30}<\operatorname{Area}(P)<S_{30}<S_{n \rightarrow+\infty}$	T F

Activity 12 Use the following words to complete the summary of what we have observed.
to overestimate: sovrastimare to underestimate: sottostimare increasing: crescente decreasing: decrescente i.e.: cioè

Using circumscribed rectangles, and thus the upper sums $\left(S_{n}\right)$, will always lead to an of the area of P, whereas using inscribed rectangles, and thus the lower sums $\left(s_{n}\right)$, will always lead to an of the area of P.

This imprecision is \qquad when using 10 inscribed or circumscribed rectangles than when using 30. The imprecision decreases when the number of rectangles \qquad
The lower sums $s_{5}, s_{10}, s_{15}, s_{20}, s_{30}, \ldots, s_{n}$ form an increasing \qquad and the upper sums S_{5}, $S_{10}, S_{15}, S_{20}, S_{30}, \ldots, S_{n}$ form a decreasing sequence.

Both of these sequences approach the \qquad value, i.e. the \qquad under the curve.

Activity 13 Let's check our progress. Below are some concepts and their definitions which should be familiar now. How well do you understand them?

Concept	Definition	Very well	Not really
Inscribed rectangle	A rectangle whose base is the width of the subinterval and whose height is the minimum of the function in the same subinterval.		
Circumscribed rectangle	A rectangle whose base is the width of the subinterval and whose height is the maximum of the function in the same subinterval.		
Inscribed union of rectangles	A set of inscribed rectangles. The number of rectangles can be any natural number.		
Circumscribed union of rectangles	A set of circumscribed rectangles. The number of rectangles can be any natural number.		
Lower sum	The area of the inscribed union of rectangles.		
Upper sum	The area of the circumscribed union of rectangles.		

Activity 14 Complete the text with the following list of words. Then listen to the recording to check your answers.

area • bound • circumscribed • greater • inscribed • lower • number • union of rectangles • under • upper
Mr. Riemann tried to calculate the area of P by covering the area under the curve with rectangles. He used two kinds of rectangles: \qquad rectangles and circumscribed rectangles.
With the inscribed rectangles he built the inscribed \qquad and with the circumscribed ones he built the \qquad union of rectangles.

The sum of the areas of the circumscribed rectangles is called the upper sum, and the sum of the areas of the inscribed rectangles is called the \qquad sum. Obviously, the area of P under the curve is greater than the lower sum but less than the \qquad sum.

The upper sum is the upper bound, meaning that the area \qquad the curve must be less than this upper bound. By contrast, the lower sum is the lower bound for the area under the curve, which means that the area under the curve must be \qquad than the lower sum.

With five rectangles the upper \qquad and the lower bound are very different. However, with ten rectangles, the upper bound approaches the lower one, while the area of P is always between them.

We're definitely making progress, but how many rectangles should we use to get an acceptable value for the ? We could go on, using more and more rectangles, but obviously this is not very efficient, and the effort increases with a greater \qquad of rectangles.
Riemann thus proposed that it would make more sense to find a general expression which can be used to calculate the area using any number of rectangles, and then work with that.

